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Abstract

Following the theoretical innovations of complementarity theory, management

control studies have investigated interdependencies between different manage-

ment control practices. In this paper, we compare the two dominant statistical

specifications to test for the presence of an interdependency. We show theoret-

ically how the power of the demand and the performance specification varies

with the level of optimality in the sample and how those specifications are vul-

nerable to correlated omitted variable bias. Our simulation results reveal that

the demand specification is more robust to variations in optimality and corre-

lated omitted variables than the performance specification. We use these results

to formulate recommendations for future research into management control in-

terdependencies.
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1. Introduction

The management accounting literature has investigated the fit between ac-

counting practices and the firms’ environment (Chenhall, 2003; Otley, 2016), as

well as the firms’ choices of interdependent practices such as delegation and in-

centives (Bouwens & Van Lent, 2007; Indjejikian & Matejka, 2012; Moers, 2006),

or the levers of control (Simons, 1994, 2000; Widener, 2007). The interdependen-

cies between different practices are the reason a collection of practices form an

accounting system (Grabner & Moers, 2013; Milgrom & Roberts, 1995). When

two practices positively reinforce or complement each other, the firm benefits

from using them together, as a system. When two practices negatively reinforce

each other, they act as substitutes. In this paper, we compare the two most

common specifications in the empirical literature to test whether practices are

complements (or substitutes), i.e., the performance specification and the de-

mand specification (Grabner & Moers, 2013), and examine the vulnerability of

these specifications to their underlying assumptions.

The performance specification tests whether the interaction between two

practices is postively correlated with performance (Athey & Stern, 1998; Carree

et al., 2011; Grabner & Moers, 2013; Hofmann & van Lent, 2017). For instance,

the interaction between delegation and accounting based incentives is positively

related to business unit performance. The performance specification assumes

that there are a ”sufficient number” of firms that deviate from the optimal level

for the practices which allows researchers to detect performance differences be-

tween optimal and suboptimal accounting systems. The extreme version of this

assumption is that all firms make random choices. The demand specification

on the other hand tests whether two practices are positively correlated with

each other after controlling for environmental factors (Arora, 1996; Grabner

& Moers, 2013; Johansson, 2018; Hofmann & van Lent, 2017). For instance,

delegation and accounting based incentives are correlated after controlling for

environmental factors. The demand specification assumes that there are a ”suf-

ficient number” of firms that simultaneously choose the optimal level of the
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practices taking into account the interdependency and the firm’s environment.

The extreme version of this assumption is that all firms make optimal choices.

In observational samples neither the assumption of completely randomly

chosen practices nor the assumption of completely optimal choices will hold

(Brynjolfsson & Milgrom, 2013). While an individual decision is either optimal

or not, a non-optimal decision can be closer or further from the optimal level.

As a result, a sample of those individual decisions can exhibit different levels of

optimality where higher levels of optimality imply more observations that are

close to the optimal decision. The methodology literature has treated the as-

sumption about the level of optimality in a sample as an untestable assumption

and recommends that researchers argue whether their chosen specification is

appropriate for their research setting. The demand specification is often seen as

more appropriate than the performance specification when one decision maker

has designed the entire accounting system, when the optimal design is not too

complicated, and when the decision maker has had sufficient time and incentives

to choose the optimal system (Grabner & Moers, 2013; Hofmann & van Lent,

2017; Carree et al., 2011; Johansson, 2018). The performance specification is

often deemed more appropriate when it involves relatively new practices and

technologies that require experimentation (Carree et al., 2011; Bedford et al.,

2016). While these recommendations are intuitive, their empirical validity is not

clear. That is, it is not clear how vulnerable each specification is to deviations

from its underlying assumption of (lack of) optimality and whether this vul-

nerability differs between the two specifications. The key question we address

in this paper is whether the typical arguments for choosing a specification are

necessary and/or sufficient.

In addressing this question, we first show how the demand and performance

specification arise from the same underlying and unobserved objective function.

The objective function formalises the performance effects of management ac-

counting practices as well as how those performance effects depend on other

practices and contingency factors. As a result, the objective function captures

the main insight of complementarity theory (Milgrom & Roberts, 1995; Grab-
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ner & Moers, 2013) and contingency theory (Chenhall, 2003; Otley, 2016) and

is thus the theoretical foundation for a hypothesis test regarding interdepen-

dencies. We then show the statistical problems that arise with the demand and

performance specification when the assumptions underlying these specifications

are not satisfied. First, the demand specification has more power to detect

an interdependency when management control practices are closer to optimal

while the performance specification is more likely to detect an interdependency

when the control practices are further from optimal. But again, how close to

or how far from optimal the practices need to be to have sufficient power is an

open question. Second, while the correlated omitted variable problem is widely

recognised for the demand specification (Grabner & Moers, 2013; Arora, 1996;

Hofmann & van Lent, 2017), it is largely ignored (Grabner & Moers, 2013;

Hofmann & van Lent, 2017) or thought of as non-existing for the performance

specification (Carree et al., 2011). We show that both specifications are vulner-

able to the same omitted variable bias when they do not appropriately control

for a contingency factor that affects both practices. When all relevant prac-

tices and contingency factors are observed, this bias can be easily addressed,

although the most commonly used variant of the performance specification un-

fortunately does not address the bias. However, when not all contingency factors

are observed, it is an open question whether the two specifications are equally

vulnerable to correlated omitted variables.

To investigate the robustness of both specifications to variations in the level

of optimality, we use a simulation approach. In doing this, we focus on Type

I errors (rejection of a true null hypothesis of no complementarity) and power

(or Type II errors, i.e., failure to reject a false null hypothesis of no complemen-

tarity). The results show that the demand specification has appropriate Type I

error rates while maintaining power to detect a real complementary effect, even

at low levels of optimality. In contrast, the theoretically derived performance

specification suffers from elevated Type I error rates at all levels of optimality

and loses power to detect true interdependencies at higher levels of optimality.

In addition, the performance specification as it is typically implemented in the
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literature is biased when the practices are contingent on the same environmen-

tal factor. Finally, in contrast to common assumptions, even in the presence

of correlated omitted variables, the demand specification fares better than the

performance specification.

This study contributes to the literature by providing three recommenda-

tions for studies that test for interdependencies between management control

practices. First of all, the demand specification should generally be preferred

over the performance specification in an observational sample of firms. While

researchers are typically recommended to argue whether their chosen specifica-

tion is appropriate for their research setting, our findings indicate that the use

of the performance specification needs to be especially well-substantiated. Even

when performance data is available, it is still advisable to report the demand

functions before reporting the performance specification (Aral et al., 2012; Cas-

siman & Veugelers, 2006). Second, when theory and prior research indicate

that the practices are contingent on environmental factors, studies should ap-

propriately control for these factors. Because the management control literature

has a rich history of studying contingency effects, we believe most management

control settings will warrant appropriate controls for contingency factors. Im-

portantly, these controls are as relevant for the performance specification as

they are for the demand specification. In the demand specification, controlling

for contingency factors means including the contingency variables as separate

independent variables. In the performance specification, controlling for con-

tingency effects requires including the interaction of the contingency factors

with the management control practices. Of the published studies using the per-

formance specification following Grabner & Moers (2013), only Bedford et al.

(2016, 2019) appropriately control for contingency factors. Third, because the

performance specification is vulnerable to Type I errors, we advise to use more

robust estimation techniques than ordinary least squares.

The remainder of this paper is structured as follows. First, we derive the

demand and performance specifications from a common objective function. Sec-

ond, we explain and calibrate the simulation approach. Third, we compare
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the robustness of the different specifications in a simulation study. Fourth,

we provide guidance for researchers who estimate interdependencies. Last, we

summarise the simulation results and recommendations, and discuss how future

research can improve the estimation of interdependencies.

2. Model and formal analysis

In this section, we present a firm’s objective function to model the essential

elements of both complementarity theory and contingency theory. According

to complementarity theory, the performance effect of a management control

practice depends on the use of another practice. According to contingency the-

ory, the performance effect of the practice depends on the environment. The

theoretical model helps to make explicit the assumptions in the two statisti-

cal specifications. We start with the assumption that a firm has to decide on

the level of two management accounting practices which both depend on one

environmental factor. We represent the levels of the management accounting

practices as x1 and x2 and the level of the environmental factor as z. We fur-

ther assume that performance, y, depends on a factor, ν while the performance

effects of each management control practice further depend on a factor ε1 and ε2

respectively. That is, there is variation among firms in the extent to which each

management control practice affects performance. x1, x2 and z are observed by

the researcher but ε1, ε2, and ν are not.

We illustrate the model with an example from the management accounting

literature where z stands for environmental uncertainty, one of the most com-

monly studied environmental factor in the contingency literature. x1 and x2 are

two commonly studied management control decisions, the extent to which de-

cisions are delegated to middle level managers (henceforth delegation) and the

extent to which accounting measures are used to evaluate and reward perfor-

mance of the middle level managers (henceforth accounting incentives). Finally,

y is the financial performance of the business unit. These four constructs have

received considerable attention in both the contingency and the complementar-

ity literature (Grabner & Moers, 2013; Chenhall, 2003; Otley, 2016). In the
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example, we cannot do justice to the rich theories and measurement developed

in the literature and therefore the example should only be seen as an illustration

of the objective function. In addition, the linear form is a special case, but its

simplicity allows us to make our point without loss of generality.

y = β0+(β1+γ1z+ε1)x1+(β2+γ2z+ε2)x2+β12x1x2−
1

2
δ1x

2
1−

1

2
δ2x

2
2+ν (1)

The objective function (1) shows how profit, y, depends on delegation and ac-

counting incentives, x1 and x2, environmental uncertainty z and the unobserv-

able factors. The parameter β12 represents the complementarity between del-

egation and accounting incentives (i.e. δ2y
δx1δx2

= β12, see Grabner & Moers

(2013)). Irrespective of which empirical test will be performed, interdependence

implies that β12 6= 0 and this is what needs to be theoretically substantiated.

In this paper, we focus on specifications to test the hypothesis that β12 6= 0.1

An example of such a test is whether the effectiveness of incentive contracts

depends on the level of delegation for managers (Moers, 2006; Indjejikian &

Matejka, 2012). The parameters γ1 and γ2 represent the contingency effect of

environmental uncertainty, z, for delegation, x1, and accounting incentives, x2.

For instance, γ1 > 0 implies that delegation is more valuable for the firm with

higher environmental uncertainty while γ2 < 0 implies that accounting incen-

tives are less valuable with higher environmental uncertainty (Chenhall, 2003).

δ1 and δ2, which we assume to be positive, represent increasing marginal costs

to the practices.2

1Initially, we limit the paper to two-way complementarities for two reasons. First, theory
in management control typically does not predict higher order interdependencies (for an ex-
ception outside of management accounting see Aral et al. (2012)). Second, the paper’s main
focus is on the consequences of deviations from completely optimal and completely random
practices for hypothesis tests. The problems we identify apply to more complex hypothesis
tests for higher order interdependencies. For simplicity of exposition, we avoid the additional
complications of testing for higher order interdependencies (Carree et al., 2011). In section 4.5,
we consider contingency effects on the interdependencies (Grabner, 2014; Grabner & Speck-
bacher, 2016; Matejka & Ray, 2017) and in section 4.4, we investigate an objective function
with three practices and two-way interdependencies (Indjejikian & Matejka, 2012).

2δ1 and δ2 are the second derivatives of the performance effects of the practices. In general,
δ > 0 is a mathematical representation of decreasing marginal returns, increasing marginal
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The objective function (1) formalises management accounting theory. The

key assumptions of complementarity theory and contingency theory are cap-

tured by the parameters β12 and γ1, γ2 respectively. In order to test for a com-

plementarity between delegation and accounting incentives, we need to make

additional assumptions about the statistical model, which we discuss below.

The theoretical assumptions discussed above and the statistical assumptions

discussed below are the same for both the demand specification and the perfor-

mance specification.

We assume that ε1 and ε2 and ν are independent which implies that the

model contains all contingency variables and all practices that affect the per-

formance of the two practices x1 and x2. The objective function (1) is similar

to the the objective function in Kretschmer et al. (2012) with two exceptions.

First, we assume that the values of x1 and x2 are continuous while Kretschmer

et al. (2012) allow for binary practices. We return to the issue of binary prac-

tices as an extension to the current model in section 4.2.3 and 4.4. Second, we

assume independence of the unobserved factors. We will relax this assumption,

when we introduce the problem of correlated omitted variables further in section

4.3.3 In the remainder of this section, we will work with the simple objective

function with two practices and one environmental factor.

2.1. Optimal level of practices

Profit maximising firms try to adopt the optimal level for each practice. As

a benchmark, we derive the optimal level for all practices by setting the first

derivative of the objective function (1) to each practice equal to 0 and then solve

for each practice. This results in:

costs, or a combination of both. For simplicity and in line with the specification in Grabner
& Moers (2013), we interpret δ as the parameter of increasing marginal costs.

3Athey & Stern (1998) discuss the implications of relaxing the independence assumption
in more detail.
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x∗1 =
β1 + γ1z + β12x

∗
2 + ε1

δ1
=
δ2(β1 + γ1z + ε1) + β12(β2 + γ2z + ε2)

δ1δ2 − β2
12

x∗2 =
β2 + γ2z + β12x

∗
1 + ε2

δ2
=
δ1(β2 + γ2z + ε2) + β12(β1 + γ1z + ε1)

δ1δ2 − β2
12

(2)

A number of conclusions can be drawn from the optimality conditions (2). First,

in the absence of complementarity (β12 = 0), the optimal level of delegation,

x∗1 and the optimal level of accounting incentives, x∗2 are still correlated. The

contingency effects of environmental uncertainty introduce a relation between

the optimal level of delegation, x∗1, the optimal level of accounting incentives,

x∗2 and environmental uncertainty, z. Second, in the absence of a complemen-

tarity (β12 = 0) and after controlling for environmental uncertainty, there is no

relation between the optimal level of delegation and accounting incentives, i.e.

the conditional correlation, cor(x∗1|z, x∗2|z) = 0. In contrast, in the presence of

a complementarity, β12 > 0, the optimal level of delegation positively correlates

with the optimal level of accounting incentives after controlling for z (Arora,

1996).

In what follows, we will refer to the observed correlations between the prac-

tices and the environmental variable. We define r12, r1z, and r2z as the observed

sample correlations between delegation, x1, and accounting incentives, x2, be-

tween delegation, x1, and environmental uncertainty, z, and between accounting

incentives, x2, and environmental uncertainty, z, respectively. In samples with

higher levels of optimality, the observed correlations are determined by the equa-

tions (2). In samples where management control practices are randomly chosen,

the correlations are 0.

Finally, the second order condition for the optimality conditions (2) equals

δ1δ2 − β2
12 > 0. The intuition behind this condition is that the increase in

marginal costs to delegation and accounting incentives needs to be relatively

large so that the interdependency does not dominate the optimal solution. That

is, it avoids corner solutions where the optimal use of the management control
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practices is to use them to their full extent or not at all.4

2.2. Performance Specification

The performance specification estimates the objective function (1) directly.

In essence, the stochastic form of function (1) is a regression equation. With

cross-sectional data, the closest approximation to the objective function is the

first of the following three regression models.

y = βp10 + (βp11 + γp11 z)x1 + (βp12 + γ2z)x2 + βp112x1x2 + δp11 x
2
1 + δp12 x

2
2 + αp1z + νp1

y = βp20 + (βp21 + γp21 z)x1 + (βp22 + γ2z)x2 + βp212x1x2 + αp2z + νp2

y = βp30 + βp31 x1 + βp32 x2 + βp312x1x2 + αp3z + νp3

The first specification captures all features of the objective function (1) with

the exception of the unobservable contingency effects on delegation and ac-

counting incentives, ε1 and ε2. Cross-sectional data does not permit estimating

the unobserved heterogeneity. In this specification, βp112 tests for the interde-

pendency between the management accounting practices. We are not aware of

any accounting studies using this specification, which we label the performance

1 specification.

The second specification, which we label the performance 2 specification,

is the correct specification for binary practices, i.e., when practices are either

absent or present. In this case, the quadratic terms, x2i , automatically drop

out of the equation. While investigating continuous practices, Bedford et al.

(2016, 2019) follow this specification as they control appropriately for contin-

gency factors and drop the quadratic terms in the specification. The majority

of the literature follows the third performance specification, which also drops

the controls for the contingency factors or assumes that γ1 = γ1 = 0. This

specification thus ignores the insights from contingency theory. We call this

4In the main analysis of this paper, we will assume that the second-order condition holds
when the control practices are continuous. In Section 4.4 we relax this assumption.

10



specification performance 3. In the remainder of this section, we explain the

potential problems with these three specifications.

2.2.1. Lack of Power

All three specifications will suffer form the well known problem that per-

formance is no longer a function of the management practices when firms op-

timally adopt interdependent practices (Grabner & Moers, 2013). This can

be illustrated using objective function (1) and the optimality conditions (2).

When we set x1 = x∗1 and x2 = x∗2 in the objective function (1), i.e., the

firm makes optimal decisions, we find that profit, y, is fully determined by the

unknown parameters and environmental uncertainty, z, and profit no longer

depends on the value of the practices. Thus, observed profit is not a function

of observed delegation and observed accounting incentives when all firms adopt

the optimal system. With optimal levels of delegation and accounting incen-

tives, business unit profit is only a function of environmental uncertainty and

there is no longer information about the practices in the performance variable.

This is what economists are referring to when they say that one cannot examine

performance effects of choices. The point is not that there are no performance

effects of adopting management control practices, but rather that such effects

cannot be empirically detected.

The loss of power of the performance specification depends on the level

of optimality in the sample. A higher level of optimality leads to stronger

correlations between the control practices and the contingency factor, and less

independent information in the observed practices about the observed profit.

For a performance specification to have sufficient power, there needs to be a

sufficient number of firms that do not adopt the optimal level of the practices

(Bedford et al., 2016; Carree et al., 2011; Hofmann & van Lent, 2017). However,

the literature has not gone beyond this rule of thumb and provides no guidance

on how large the deviations from optimality need to be. Our simulation study

will provide an answer to this question.
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2.2.2. Correlated Omitted Variable

In this paper, we identify a second problem with the most popular specifica-

tion in the literature, performance 3, which follows directly from the contingency

effects. The specification omits the terms x1z, x2z, x
2
1, and x22. Although a full

treatment of the omitted variable bias is beyond the scope of this study, we

illustrate the problem for the special case where x1, x2, and z follow a multi-

variate standard normal distribution. Appendix Appendix A shows that the

bias for omitting x1z, x2z, x
2
1, and x22 in the estimate βp312 is proportional to the

following components:

γ1
cov(x1x2, x1x2)

var(x1x2)
= γ1

r2z + r12r1z
1 + r212

γ2
cov(x1x2, x2z)

var(x1x2)
= γ2

r1z + r12r2z
1 + r212

δ1
cov(x1x2, x

2
1)

var(x1x2)
= δ1

r12
1 + r212

δ2
cov(x1x2, x

2
2)

var(x2x2)
= δ2

r12
1 + r212

(3)

where r12, r1z, and r2z are the observed sample correlations, as defined before.

Let us assume that there is no interdependency, i.e., β12 = 0. The estimate

βp312 , which equals β12 + bias, is then affected by the four components specified

in (3). βp312 = β12 = 0 when the observed correlations r12, r1z, and r2z are

all zero, or in other words, when firms just randomly pick their management

control practices. However, as explained in the previous section, contingency

theory implies that those empirical correlations between delegation, accounting

incentives, and environmental uncertainty are different from 0 when firms are

not completely ignorant of the optimal levels. As a result, when environmental

uncertainty is not appropriately controlled for, the performance 3 specification

is vulnerable to an omitted variable bias when testing for a complementarity

between delegation and accounting incentives. The intuition behind the bias is

as follows. If delegation, x1, and environmental uncertainty, z, are correlated,

the interaction between delegation and accounting incentives, x1x2, and the

interaction between accounting incentives and environmental uncertainty, x2z,

are also correlated. As a result, when the contingency effect, x2z, is omitted

from the performance specification, the complementarity test, x1x2, will be
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confounded by the contingency effect, even when β12 = 0. That is, a Type I error

occurs. Note that this problem extends to the performance 1 and performance 2

specifications when factors unobservable to the researcher affect both practices,

which we will address later.

Because the bias does not require perfectly optimal decisions and follows

directly from the contingency effect of environmental uncertainty on delegation

(γ1 6= 0) and accounting incentives (γ2 6= 0), this problem cannot be easily

ignored in a typical management accounting study. A special case of the omitted

variable bias is the omission of the quadratic terms δ1x
2
1 and δ2x

2
2 in performance

2. Omission of these terms will bias the estimate of the βp212 with a factor

proportional to the correlation between delegation and incentives.

The empirical and methodology literature has focused on this bias in the

demand specification (see also section 2.3) but has largely ignored the problem

of correlated omitted environmental factors in performance specifications. How-

ever, in the above, we showed that the performance specifications suffer from

the exact same bias in contrast to what has been argued in the methodology

literature (Carree et al., 2011).

2.3. Demand Specification

The demand specification can take two forms, the regression approach and

the conditional correlation approach. The first approach regresses one practice

(e.g. delegation) on the other (e.g. accounting incentives) and controls for

environmental uncertainty.

x1 = βd1 + βd12x2 + γd1z + εd

The regression specification approximates the optimality condition (2) where

βd12 is the parameter that estimates the complementarity effect. An alternative

and equivalent approach is to estimate the conditional correlation between del-

egation and incentives. Prior research has used seemingly unrelated regressions

with x1 and x2 as dependent variables or seperate regressions to condition on
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environmental practices (Indjejikian & Matejka, 2012; Matejka & Ray, 2017).5

In the remainder of this section, we will explain the problems with the demand

specification from the perspective of the regression approach. Those problems

equally apply to the conditional correlation approach.

2.3.1. Lack of Power

When β12 6= 0 but firms do not take these interdependencies and the contin-

gency effects into account, the empirical correlations are expected to be 0 and

so is the regression estimate βd12. In the remainder of this study, we consider

this an unreasonable assumption unless researchers can identify a natural ex-

periment for the adoption of the practices, x1 and x2. In the simulation study,

we will investigate what happens when we vary the extent to which firms adopt

the optimal level of delegation and accounting incentives. When firms’ account-

ing systems deviate strongly from the optimal accounting system, the empirical

correlations will be small and the demand specification will lack power to detect

a real interdependency.

2.3.2. Correlated Omitted Variable

The omitted variable bias for the demand function is a well known prob-

lem (Arora, 1996; Grabner & Moers, 2013; Hofmann & van Lent, 2017). When

testing for the complementarity between delegation and accounting incentives

without controlling for environmental uncertainty, the estimate of the interde-

pendency, βd12, will be biased by γd1
cov(z,x2)
var(x2)

. For instance, if environmental

uncertainty is positively associated with delegation (γd1 > 0) and negatively

with accounting incentives (cov(z,x2) < 0), βd12 might be negative even in the

presence of a complementarity between delegation and accounting incentives,

i.e., β12 > 0. Hence, the demand specification needs to control for environmen-

5The equivalence between the regression and the conditional correlation follows from

the regression anatomy (Angrist & Pischke, 2008). That is, βd12 =
cov(x1,x2|z)
var(x2|z)

=

cor(x1, x2|z) stdev(x1)
stdev(x2|z)

. The semi-partial correlation is directly related to the partial or con-

ditional correlation:
√

1− cor2(x1, z)cor(x1, x2|z) = cor(x1|z, x2|z) Thus, βd12 is proportional
to the conditional correlation cor(x1|z, x2|z).
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tal uncertainty. Similarly, a researcher has to control for all other contingency

factors that effect both delegation and incentives.

2.4. Summary

A researcher’s decision to use a performance specification or a demand spec-

ification is often framed as a trade-off between the lack of power of the demand

specification when the practices are far from the optimal levels and the lack

of power of the performance specification when the practices are close to the

optimal levels (Grabner & Moers, 2013; Aral et al., 2012; Johansson, 2018).

While our analysis confirms the existence of this trade-off, one key question

that remains, is at what levels of optimality one method dominates the other

one. For example, how far from the optimal levels should firm choices be before

the performance specification has more power than the demand specification

and is thus preferred?

An additional decision rule by researchers seems to be the correlated omitted

variable problem. The correlated omitted variable bias of the demand specifica-

tion is a well known problem (Grabner & Moers, 2013; Arora, 1996; Carree et al.,

2011), which would suggest a preference for the performance specification when

such omitted variables are expected to be present. However, our analysis above

highlights the often ignored omitted variable bias in the performance specifi-

cation. We show that both specifications are vulnerable to the same omitted

variable bias. That is, both specifications will be biased if they do not control

appropriately for an environmental factor that is a contingency factor for both

practices of interest and when firms (to some extent) take into account these

contingencies when they design their accounting system. A second question is

therefore: how vulnerable is each method to correlated omitted variables? To

address these two questions, we perform a simulation study.

3. Simulation Study

In the simulation study that follows, we investigate the three performance

specifications and the demand specification with respect to: (1) Type I errors,
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i.e., incorrectly rejecting a true null-hypothesis; and (2) power, i.e., the ability

to reject a false null-hypothesis. Our main analysis focuses on the key question

of how the level of optimality affects Type I errors and power of the theoreti-

cally appropriate demand and performance 1 specifications. We further com-

pare these specifications to the performance 2 and performance 3 specification

that researchers have used to test for a complementarity between management

accounting practices.

Following the main analysis, we test the robustness of the findings to varia-

tions in the parameters of the objective function (1). In addition, we investigate

to what extent the demand specification is vulnerable to a violation of the sec-

ond order optimality condition and whether the properties of the specifications

change with binary practices. Lastly, we investigate to what extent the theo-

retically appropriate demand and performance 1 specification are vulnerable to

correlated omitted variables.

3.1. Simulation Algorithm

In this section, we describe the simulation algorithm and calibrate the pa-

rameters to the observed correlations in nine management accounting studies

that test for an interdependency between management control practices and cite

Grabner & Moers (2013). The simulation algorithm is based on the objective

function (1) for a single firm from the formal analysis. For completeness, we

reproduce it here:

y = β0 + (β1 + γ1z + ε1)x1 + (β2 + γ2z + ε2)x2 + β12x1x2 −
1

2
δ1x

2
1 −

1

2
δ2x

2
2 + ν

The structural parameters, β, γ, and δ are the same for each simulated firm in

a sample, which allows for a clean analysis of our questions. For the baseline

analysis, we set β0, β1, β2 equal to 0 because these parameters do not interact

with the effect of the interdependency. Keeping β1 = β2 = 0 also ensures that

the mean optimal level of the practices is in the middle of the distribution that

generates the values of the practices, and minimises any ceiling or floor biases in

the algorithm. The contingency effects are initially set at γ1 = 0.33 and γ2 = 0.

16



We will compare samples where the contingency effect on the second practise

varies from being absent (γ2 = 0) to being positive (γ2 = 0.33) or negative

(γ2 = −0.33).

The values for z, ε1, and ε2 are different for each firm and are simulated

from a normal distribution with mean 0 and standard deviations 1, σε1 , and σε2

respectively. The δi’s and σεi ’s determine the scale and unobserved heterogene-

ity of the effects, respectively, and interact with the interdependency. In the

baseline analysis, we set these parameters equal to 1 and vary them in follow-

up simulations to investigate the robustness of the baseline analysis. Finally,

ν is normally distributed with standard deviation, σν . The baseline objective

function in the simulation is thus:

y = (0.33z + ε1)x1 + ε2x2 + β12x1x2 −
1

2
x21 −

1

2
x22 + ν (4)

Note that in this baseline objective function, there is no omitted variable bias in

the four specifications with respect to environmental factors. Next, we show how

the baseline scenario is a good reflection of a typical study in the management

accounting survey literature. To investigate whether the different specifications

have the power to detect a true effect while maintaining nominal Type I error

rates, we will compare samples with a complementarity effect (β12 = .25) to

samples without a complementarity effect (β12 = 0).

To examine how the level of optimality affects Type I errors and power, we

vary the level of optimality, O. The simulation algorithm mimics the process

where firms experiment with different combination of delegation, x1, and ac-

counting incentives, x2, and keep the configuration that results in the highest

business unit profit y. When O is larger, a firm has experimented with more

configurations and therefore the probability that the firm selects the optimal

configuration of accounting practices is higher.

The full procedure for one observation is described in mathematical form in

algorithm (5). In order to generate a sample of 300 observations, the algorithm

is run 300 times.
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z ∼ N (0, 1); εi ∼ N (0, σεi)

∀0 < o ≤ O :xoi ∼ U [−5, 5]

∀0 < o ≤ O :ŷo = β0 + (β1 + γ1z + ε1)xo1 + (β2 + γ2z + ε2)xo2 + β12x
o
1x
o
2 −

1

2
δ1x

o2
1 −

1

2
δ2x

o2
2

∀0 < o ≤ O :yo ∼ N (ŷo, σν)

ymax = max(y1, y2, ..., yO)

if yo = ymaxthen y = yo, xi = xoi
(5)

For each firm, the algorithm generates values for xo1, xo2 from two indepen-

dent uniform distributions between −5 and 5. The range allows the randomly

generated values for the practices to be far from the optimal level in the baseline

analysis. Next, the algorithm calculates the performance, yo, according to the

objective function (1). For each firm, we repeat this process O times and keep

the values of the repetition for which yo is the highest as the observation in the

sample. As a result, the more tries a firm has with different accounting systems,

i.e., the greater O, the more likely it is they will adopt the optimal combination

of the two practices. The parameter O is the same for each observation in a

sample and is the key parameter capturing the probability of how close the firms

in the sample are to the optimal level of the practices.

In Figure 1 we plot a sample of 300 observations of x1 and x2 for 6 levels

of optimality, O = 2, 4, 8, 16, 32, 64 for the baseline scenario with a complemen-

tarity (β12 = 0.25). The figure shows the within sample heterogeneity of the

practices in a simulated sample. If we take the sample with O = 64 as close to

the optimal distribution, we see that there are always a number of observations

outside the optimal distribution with lower levels of optimality. Nevertheless,

there are also observations that are closer to the optimal level for each level of

optimality. That is, increases in the level of optimality increase the probability

that an observation will be closer to optimal which also shows in the stronger

positive relation between x1 and x2 for higher levels of optimality.
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Figure 1: The figure shows a scatterplot of the distribution of 300 observations of x1
and x2 for different levels of optimality, O = 2, 4, 8, 16, 32, 64. The complementarity
effect is present (β12 = 0.25). The decreasing marginal costs are set as δ1 = δ2 = 1.
The effect of the environmental variable only affects one of the choices (γ1 = .33, γ2 =
0). The unobserved variation parameters are set at σε1 = σε2 = σν = 1.
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3.2. Calibration to Empirical Studies

In order to calibrate the simulation, we collect the correlations of published

survey studies that cite Grabner & Moers (2013) and have an interdependency

hypothesis. The median number of observations in the studies is 250 and the

average is 265. To give the methods the benefit of the doubt, the simulation

will create samples of 300 firm observations where each observation follows the

algorithm above. Next, we collect the correlation matrix from 9 studies that re-

port full correlation matrices with correlations between practices, and between

practices and environmental factors (Dekker et al., 2016; Grabner, 2014; Grab-

ner & Speckbacher, 2016; Bedford & Malmi, 2015; Heinicke et al., 2016; Bedford

et al., 2019; Abernethy et al., 2015; Sponem & Lambert, 2016; Samagaio et al.,

2018). To get an estimate of observed correlations in empirical studies, we cal-

culate the median and 90th percentile absolute correlation between practices

and between a practice and a contingency factor. We consider the median value

of those statistics to be typical for studies on interdependencies in management

accounting. The median absolute correlation between two practices is 0.22 and

the median 90th percentile correlation is 0.39. The median absolute correlation

between a practice and an environmental factor is 0.16 and the median 90th

percentile correlation is 0.30

To illustrate the effect of the optimality parameter and the strength of the

associations generated by the simulation algorithm, we generate 100 samples

with each 300 observations under the baseline scenario outlined above for 6

levels of optimality: O ∈ {2, 4, 8, 16, 32, 64}. For each sample, we calculate three

statistics to illustrate that the simulated samples reflect a typical management

accounting study. We plot the statistics for each simulated sample in Figure

2. The first statistic is the correlation between x1 and x2 (Panel A) and the

second is the correlation between x1 and z (Panel B). The absolute correlation

between x1 and x2 varies between 0 and .5 and is smaller than the median

90th percentile (.39) in a typical study except at the higher levels of optimality.

Similarly the correlation between x1 and z varies between 0 and .4 and is smaller

than the median 90th percentile (.30) in a typical study except at the higher
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levels of optimality. Hence, we conclude that the associations in our simulations

are representative for the management accounting literature.

The third statistic is the non-optimality ratio and quantifies the extent to

which deviations from the optimal level x∗1|z cannot be explained by the op-

timality conditions (2).6 The non-optimality ratio measures how much of the

variation in the practices is caused by the algorithmic search process and how

far the practices in a sample are from the optimal levels. The resulting ratio is

comparable to an R2 statistic because the non-optimality ratio equals 1 when

the difference between x1 and x∗1 can be fully explained by the absence of op-

timality in a sample, and the ratio equals 0 when x1 = x∗1. Figure 2 Panel C

shows the ratio for the 100 samples for different levels of the optimality param-

eter O. The ratio declines for higher values of the optimality parameter and for

all values of O at least 20% of the variation cannot be explained by the optimal-

ity condition. In other words, the generated samples always have substantial

deviations from optimal practices, which should give performance specifications

a chance of detecting performance differences between optimal and sub-optimal

accounting systems.

3.3. Power and Type I Error

In the next section, we will compare the power and Type I error rate of

the four specifications when varying the optimality parameter, O. Because the

accounting literature is concerned with testing the hypothesis that there is a

(no) complementarity between two management control practices, a focus on

power and error rates is appropriate. For completeness, we repeat the four

6The total deviations from the optimal level conditional on the contingency factor is cal-
culated as the sum of (x1 − E(x∗1|z))2 for each observation in the sample, where E(x∗1|z)
is given by the optimality condition (2). The amount of variation explained by the unob-
served factors, ε1 and ε2, can also be calculated from the optimality conditions (2), i.e.,

V ar(x∗1|z) =
δ22σ

2
ε1

+β2
12σ

2
ε1

(δ1δ2−β2
12)

2 The non-optimality ratio is then calculated as the ratio between

the deviations from optimality not explained by the unobserved factors and the total devia-
tions from optimality.
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Figure 2: The figure shows the value of the correlation between x1 and x2 (Panel A),
the correlation between x1 and z (Panel B), and the non-optimality ratio (Panel C),
for 100 samples for 6 different levels (2, 4, 8, 16, 32, 64) of the optimality parameter,
O. The complementarity effect is either present (β12 = 0.25) or absent (β12 = 0).
The decreasing marginal costs are set as δ1 = δ2 = 1. The effect of the environmental
variable only affects one of the choices (γ1 = .33, γ2 = 0). The unobserved variation
parameters are set at σε1 = σε2 = σν = 1.

specifications here

x1 = βd1 + βd12x2 + γd1z + εd

y = βp10 + (βp11 + γp11 z)x1 + (βp12 + γ2z)x2 + βp112x1x2 + δp11 x
2
1 + δp12 x

2
2 + αp1z + νp1

y = βp20 + (βp21 + γp21 z)x1 + (βp22 + γ2z)x2 + βp212x1x2 + αp2z + νp2

y = βp30 + βp31 x1 + βp32 x2 + βp312x1x2 + αp3z + νp3

The β12 coefficients for each specification provide the test for the presence of an

interdependency. The simulation generates 1000 samples for each combination

of parameters. For each combination, we report the distribution of the t-statistic

for the interdependency coefficient and compare it to the traditional cut-off value

for the 5% level of significance (|t| > 1.97). We also calculate the power and

Type I error rate of the specifications to investigate the performance of the four

specifications in more detail. The power is the percentage of samples with a

complementarity effect where the p-value is lower than 0.05 and the estimated

coefficient is positive.7 The Type I error is the percentage of samples without a

7An important caveat is that the power of a study will also be influenced by the size of
the effect, measurement error, random variation, and the number of observations in the study.
In the simulations, we assumed a fixed effect (β12 = 0.25), no measurement error, fixed the
parameters that control random variation, σε1 , σε2 , and σν , and the number of observations
per sample. As a result, the absolute percentages in the results should be interpreted with
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complementarity effect where the p-value is lower than 0.05 (irrespective of the

sign of the estimated coefficient).

4. Results

4.1. Performance and Demand Specification

4.1.1. Power

Figure 3 Panel A shows a boxplot for the distribution of t-statistics for

each type of test and each combination of parameters. The dot of the boxplot

shows the median t-statistic of the 1000 samples, the gap between the whiskers

shows the interquartile range, and the ends of the whiskers show the minimum

and maximum t-statistic. Each boxplot can be compared to the zero line and

the dotted lines representing a 95% confidence interval around a null effect.

When β12 = 0.25, we expect the distribution of the t-statistic to be above the

dotted lines because it shows that the test reliably reports a significant positive

interdependency (power).

Figure 3 Panel A reveals the basic trade-off between the demand specification

and the performance specification: with low levels of optimality the performance

function is more likely to detect a true complementarity effect while the demand

function is more likely to detect a true complementarity effect with high levels

of optimality (Grabner & Moers, 2013; Aral et al., 2012; Johansson, 2018).

The boxplots of the t-statistics are above the 95% confidence interval for the

performance 1 specification with lower levels of optimality and they are above

the 95% confidence interval for the demand specification for higher levels of

optimality.

Interestingly, even at relatively low levels of optimality, i.e., O = 4, the de-

mand specification has similar power to the performance 1 specification. Figure

2 shows that with O = 4 the optimality condition can at best explain 40% of

the variation in the distance between the observed level of the practices and

the optimal level of the practices. This implies that, as long as firms avoid the

caution. This study is mainly interested in the relative differences between specifications,
focusing on a clean setting and a fair comparison.

23



worst possible combinations of management accounting practices, the demand

specification is more likely to detect a true effect.

The performance 2 specification without the quadratic terms fares worse

than the performance 1 specification at lower optimality levels. The boxplots

fall almost entirely within the 95% confidence interval around 0 with low levels

of optimality and a true effect. The omission of the quadratic terms decreases

the ability of the performance 2 specification to detect a real interdependency

(β12 = 0.25) at lower levels of optimality. Surprisingly, the performance 2 spec-

ification has more power to detect a real interdependency than the performance

1 specification at higher levels of optimality. The counterintuitive reason for

this is that the bias associated with the omission of the quadratic terms (see

equation 3) inflates the estimate of the complementarity with a factor propor-

tional to the correlation between x1 and x2. In effect, the bias in performance 2

inadvertently picks up the same signal, i.e. the relation between the two prac-

tices, as the demand specification. Nevertheless, in terms of power, the demand

specification dominates the performance 2 specification. The performance 3

specification performs as poorly as the performance 2 specification, in terms of

power.

To evaluate the demand and performance specifications in more detail, we

report the power of the four specifications in Table 1. The results show that the

”optimality trade-off” between the demand specification and the performance

specification that is discussed in the literature (Grabner & Moers, 2013; Aral

et al., 2012; Johansson, 2018) is really a second order problem. Both the demand

and the performance 1 specification are able to detect a true interdependency

with more than 80% probability for low to medium levels of optimality. However,

the demand specification is more likely to detect a true effect at higher levels of

optimality. Strictly speaking, the demand specification is more likely to detect

a true effect at all levels of optimality but the lowest level, i.e., at O = 2. From

a power perspective, the demand specification dominates the performance 1

specification. Finally, the performance 2 and performance 3 specifications are

not able to detect the true interdependency for most of the parameter space
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Figure 3: t-statistic of the performance and demand specification to test for com-
plementarities when there is a complementarity effect (β12 = .25) in Panel A or a
null effect (β12 = 0) in Panel B. The boxplots represent the median (the dot), the
interquartile range (the gap), and the minimum and maximum (the whiskers). O is
varied between 2, 4, 8, 16, 32, and 64. The effect of the environmental variable, z,
on the second choice is either absent (γ1 = .33, γ2 = 0), or negative (γ1 = .33 and
γ2 = −.33).
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Table 1: Power and Type I Error Rate for Baseline Simulation

Level of Optimality

specification γ2 2 4 8 16 32 64

Power
demand -0.33 0.86 1.00 1.00 1.00 1.00 1.00
demand 0.00 0.84 1.00 1.00 1.00 1.00 1.00
demand 0.33 0.84 1.00 1.00 1.00 1.00 1.00
performance 1 -0.33 1.00 0.98 0.82 0.44 0.16 0.05
performance 1 0.00 1.00 0.99 0.81 0.45 0.17 0.06
performance 1 0.33 1.00 0.98 0.83 0.44 0.16 0.06
performance 2 -0.33 0.34 0.11 0.19 0.69 0.95 0.99
performance 2 0.00 0.33 0.10 0.19 0.69 0.96 0.99
performance 2 0.33 0.37 0.12 0.20 0.70 0.96 1.00
performance 3 -0.33 0.28 0.07 0.14 0.55 0.86 0.95
performance 3 0.00 0.35 0.12 0.25 0.75 0.97 0.99
performance 3 0.33 0.45 0.25 0.47 0.94 1.00 1.00

Type I
demand -0.33 0.04 0.03 0.04 0.05 0.04 0.04
demand 0.00 0.04 0.06 0.03 0.04 0.04 0.05
demand 0.33 0.04 0.04 0.05 0.05 0.05 0.05
performance 1 -0.33 0.15 0.15 0.15 0.16 0.15 0.15
performance 1 0.00 0.15 0.17 0.16 0.17 0.14 0.14
performance 1 0.33 0.14 0.14 0.16 0.15 0.13 0.14
performance 2 -0.33 0.20 0.18 0.18 0.16 0.20 0.25
performance 2 0.00 0.20 0.20 0.17 0.17 0.19 0.22
performance 2 0.33 0.20 0.18 0.18 0.16 0.18 0.24
performance 3 -0.33 0.22 0.19 0.23 0.28 0.39 0.48
performance 3 0.00 0.18 0.20 0.16 0.17 0.22 0.25
performance 3 0.33 0.20 0.20 0.22 0.30 0.42 0.45

Note:
Type I error rates and power for the demand and performance
specifications at different levels optimality: 2, 4, 8, 16, 32, 64. The
parameters are the same as in Figure 3.
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under investigation, except at high levels of optimality. As stated before, the

power that these specifications have at higher levels of optimality is due to

the bias from omitting the quadratic terms which depends on the correlation

between x1 and x2. While this bias helps with increasing power, it comes at the

cost of high Type I error rates, as we show next.

4.1.2. Type I error

Figure 3 Panel B shows a boxplot for the distribution of t-statistics for each

type of test and each combination of parameters. When β12 = 0, we expect

the distribution of the t-statistic to be centred on 0, as well as 95% of the

distribution to be between the two dotted lines. When the distribution is not

centred on 0, the test is biased. When the distribution is too wide, the test

reports too many significant interdependencies in the absence of a true effect

(Type I error).

Figure 3 Panel B shows that the demand specification, the theoretically

appropriate performance 1 and the performance 2 specifications have an average

t-statistic close to 0 in the absence of an interdependency. The boxplots are

centred around the zero line for these three specifications. Recall that the

omission of the quadratic terms does not bias the estimate of a complementarity

in the absence of the complementarity (β12 = 0).

The performance 3 specification fares worse than all other specifications.

The omission of the interaction terms x1z and x2z biases the estimate of the

interdependency when γ1γ2 6= 0. The bias can be easily seen in Figure 3 Panel

B. The distribution of t-statistics for samples without a complementarity effect

no longer centres on 0 when the environmental factor has a contingency effect

on the performance of both practices and the bias increases with higher levels

of optimality. The bias is negative when γ2 is negative and positive when γ2 is

positive. The latter case is not depicted in Figure 3.

To evaluate the Type I errors of the demand and performance specifications

in more detail, we report the percentage of samples for which the estimate of

β12 is significantly positive or negative in Table 1. Under the parameters in the
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simulation study, the demand specification has Type I error rates slightly below

or equal to 0.05. This means that the number of false positives are consistent

with the nominal p-value of 5%. The theoretically appropriate performance 1

specification tends to have error rates elevated by a factor two to three relative

to the demand specification. The most worrying results are for the performance

2 and 3 specifications. Dropping the quadratic effects increases the error rates

in the performance 2 specification to around .20, four times the nominal error

rate. The most commonly used specification in the literature, performance 3,

has even higher Type I error rates that increase with higher levels of optimality

and when the environmental factor has a contingency effect on both practices.

The misspecification in performance 3 leads to a bias in the estimated coefficient

for the interdependency and thus the t-statistic. In conclusion, given the pa-

rameters in the simulation study only the demand specification rejects the null

hypothesis at nominal 5% level of significance. The theoretically derived perfor-

mance 1 specification has elevated error rates, and the two other performance

specifications are even more vulnerable to false positives.

4.1.3. Take-away of baseline simulation

The results of the simulation using the baseline model reveal the following:

In contrast to arguments put forward in the literature, the demand specifica-

tion has significant power at all levels of optimality. The assumption regarding

the level of optimality to decide between specifications is a second-order con-

sideration. Unless the researcher can argue that the sample has quasi-random

assignment of practices, the demand specification should be preferred. In ad-

dition, the Type I error rates of the demand specification are consistent with

the nominal p-value of 5%. The theoretically appropriate performance 1 speci-

fication has significant power at low to medium levels of optimality, which is in

line with arguments in the literature. However, the problem with this specifica-

tion is the elevated Type I errors. These Type I errors only get worse once the

performance specification is misspecified, as in performance 2 and performance

3.
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One way to interpret the elevated Type I errors of the performance speci-

fications is to think about how a reader should react when observing a study

with a significant positive interaction x1x2. To demonstrate the problems with

the performance 3 specification, we provide one dramatic example for O = 4

and γ2 = −0.33. If we assume that a priori, we are indifferent between a null

effect and a true interdependency of β12 = 0.25, and we observe one study that

reports a significant positive interaction x1x2, the study is more likely to be

from a sample where the null holds than from a sample where there is a true

interdependency!

In sum, the results regarding power and Type I errors indicate that the

demand specification performs better on both dimensions compared to all three

performance specifications.

4.2. Parameter Variations

In this section, we explore the robustness of the above conclusions to vari-

ations in the parameters of the objective functions. Given the large number

of possible variations, we restrict ourselves to theoretically driven comparisons.

We do not consider the condition O = 64 in the following results because gener-

ating a sample of O = 64 is as computationally costly as generating a sample of

each of the other levels of optimality. Furthermore, the results in Table 1 and

Figure 3 show that the results do not qualitatively differ between O = 32 and

O = 64.

4.2.1. Performance Variation

We first investigate whether an increase in the variance of performance, σν ,

changes the above conclusions. This increase in variance has two possible effects.

The first effect is a decrease in the importance of the management practices for

performance, which decreases the power of the performance specification. The

second effect follows from the first. When the management practices are less im-

portant, the level of optimality effects are less pronounced, and the correlations

between x1, x2, and z are weaker, which in turn decreases the power of the de-

mand specification and the omitted correlated variable bias in the performance
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Figure 4: t-statistic of the performance and demand specification to test for com-
plementarities when there is a complementarity effect (β12 = .25) in Panel A or a
null effect (β12 = 0) in Panel B. The boxplots represent the median (the dot), the
interquartile range (the gap), and the minimum and maximum (the whiskers). O is
varied between 2, 8, 32. The effect of the environmental variable, z, on the second
choice is negative (γ1 = .0.33 and γ2 = −.33).

2 and performance 3 specification.

To investigate the role of σν , we vary the parameter between 1, 2, and 4 while

keeping the other parameters the same as in Figure 3. For clarity of exposition,

we limit the number of optimality variations (O = 2, 8, 32) and the number of

variations of the contingency effect x2z (γ2 = −.33) in Figure 4.

The results in Figure 4 and Table 2 are qualitatively the same as the results

in Figure 3 and Table 1. Surprisingly, in the presence of an interdependency,

the increase in performance variance hardly affects the power of the demand
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Table 2: Power and Type I Error Rate with Performance Variation

Level of Optimality

specification γ2 2 8 32

Power
demand -0.33 0.75 1.00 1.00
demand 0.33 0.75 1.00 1.00
performance 1 -0.33 0.98 0.53 0.20
performance 1 0.33 0.97 0.49 0.17
performance 2 -0.33 0.30 0.06 0.16
performance 2 0.33 0.32 0.05 0.14
performance 3 -0.33 0.25 0.04 0.12
performance 3 0.33 0.39 0.11 0.37

Type I
demand -0.33 0.04 0.05 0.04
demand 0.33 0.05 0.05 0.05
performance 1 -0.33 0.09 0.06 0.06
performance 1 0.33 0.08 0.06 0.07
performance 2 -0.33 0.12 0.07 0.07
performance 2 0.33 0.13 0.07 0.07
performance 3 -0.33 0.12 0.09 0.10
performance 3 0.33 0.14 0.08 0.11

Note:
Type I error rates and power for the demand
and performance specifications at different lev-
els optimality: 2, 8, 32. The parameters are
the same as in Figure 4. Only the results for
σν = 4 are reported.
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specification. At all but the lowest level of optimality, the demand specifica-

tion correctly identifies the interdependency for every simulated sample with a

real interdependency, although the t-statistics decrease with higher performance

variance. The drop-off in the t-statistic is steeper for the performance 1 specifi-

cation to the extent that power drops to around 20% when O = 32 and σν = 4.

In summary, these results indicate that the impact of increasing the performance

variance is a major decrease in the power of the performance specifications and

only a minor decrease in the power of the demand specification.

Regarding Type I errors, we find that the demand, the performance 1, and

the performance 2 specification are unbiased. In addition, the demand speci-

fication has false positive rates below or close to the nominal rates, while the

performance 1 specification still has elevated Type I error rates. The perfor-

mance 2 and performance 3 specification exhibit the same problem as before,

namely elevated false positive rates as a result of misspecification. The increase

in unobserved performance variation does lessen the impact of this bias. In

summary, the conclusion that the demand specification outperforms the perfor-

mance specifications is not changed when the noise in performance increases.

4.2.2. Marginal Costs

In this section, we vary the size of the increase in marginal costs, δ1 = δ2.

We keep the parameters equal for both management control practices but they

become smaller in size. There are two consequences of lowering the increase

in marginal costs. First, decreasing δ1 = δ2 increases the importance of the

complementarity between the management control practices. Second, the bias

from omitting the quadratic terms is smaller. In the baseline scenario, we used

δ1 = δ2 = 1. In this section, we compare the baseline scenario to two other val-

ues, i.e., 0.25 and 0. δ1 = δ2 = .25 is the largest value for which the parameters

violate the second-order optimality condition β12 <
√
δ1δ2. When the second-

order optimality condition is violated, the optimal level for the practices will

cluster towards 5 and -5 and away from 0. The extreme case is when δ1 = δ2 = 0

which may impede the inference by the demand specification even further.
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Table 3: Power and Type I Error Rate and Marginal Costs

Level of Optimality

specification δi 2 8 32

Power
demand 0.00 0.99 1.00 1.00
demand 0.25 1.00 1.00 1.00
demand 1.00 0.85 1.00 1.00
performance 1 0.00 1.00 0.72 0.01
performance 1 0.25 1.00 0.23 0.00
performance 1 1.00 1.00 0.83 0.16

Type I
demand 0.00 0.05 0.06 0.05
demand 0.25 0.06 0.05 0.05
demand 1.00 0.04 0.05 0.04
performance 1 0.00 0.11 0.09 0.07
performance 1 0.25 0.14 0.10 0.11
performance 1 1.00 0.15 0.16 0.14

Note:
Type I error rates and power for the de-
mand and performance specifications at dif-
ferent levels optimality: 2, 8, 32. The param-
eters are the same as in Figure 5. The results
are aggregated over the values for γ2 (−0.33,
0.33).

Figure 5 and Table 3 report the power and Type I error rate of the different

specifications for samples of firms with slowly increasing (δi = .25) or fixed

marginal costs (δi = 0). Because the results showed no trends for different

values of γ2, we aggregated the results over all values of γ2 in the table. The

power of the demand specification is generally better for all but the lowest level

of optimality, while the performance 1 specification suffers from steep decreases

in power with higher levels of optimality. The demand specification does suffer

from slightly elevated false positives when the marginal costs of the choices

are constant or only increasing slowly. However, the overall conclusions are

unaffected.

4.2.3. Binary Practices

An alternative approach to deal with accounting practices with fixed or de-

creasing marginal costs is to treat them as binary decisions, because the optimal
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Figure 5: t-statistic of the performance and demand specification to test for com-
plementarities when there is a complementarity effect (β12 = .5) in Panel A or a null
effect (β12 = 0) in Panel B. The boxplots represent the median (the dot), the in-
terquartile range (the gap), and the minimum and maximum (the whiskers). N is
varied between 2, 8, 32. The effect of the environmental variable, z, on the second
choice is negative (γ1 = .33 and γ2 = −.33). The change in marginal costs varied
between δ1 = δ2 = 0, .25, 1
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decision will either be to use the practice to its full extent or not use it at all.

When the accounting practices are binary, the quadratic terms in the perfor-

mance 1 specification are no longer identified. Hence, we will compare the

demand with the performance 2 specification. In the demand specification, we

have to take into account that the dependent variable is now a binary outcome.

Hence, we compare the linear probability model we have used so far, to the

logit and probit estimates of the same specification. However, these alternative

estimation methods should produce the same results in our setting.

We simulate new samples for the parameters in the main analysis with the

following levels of optimality: 2, 4, 8, 16. The most important change in al-

gorithm (5) is that we generate the accounting choices, xoi , no longer from a

uniform distribution but let them be −1 or 1 with equal probability. We also

set the parameters δ1 and δ2 equal to 0.

The results are shown in Table 4. Because the results again showed no

differential trends for different values of γ2, we aggregated the results over all

values of γ2. The power of the tests is lower for all tests compared to the same

parameters in Table 1 for continuous accounting practices. As before, we find

that at all but the lowest level of optimality, the demand specification has more

power to detect a true effect, independent of the functional form used to estimate

the complementarity. All specifications have similar and acceptable Type I error

rates. In this specific case, the performance 2 specification does not suffer from

elevated Type I error rates. As before, with binary practices, we reach the

same conclusion that the demand specification is superior to the performance

specification as long as firms largely avoid accounting systems where the relation

between the practices is the opposite of the optimal relation.

4.3. Correlated Omitted Variable

In this section, we investigate to what extent an omitted correlated envi-

ronmental variable affects our conclusions for the demand and performance 1

specification. The baseline simulation showed that the omission of a contin-

gency factor that affects the performance of both practices, as in performance
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Table 4: Power and Type I Error Rate with Discrete Practices

Level of Optimality

specification 2 4 8 16

Power
demand 0.27 0.71 0.95 0.99
demand (logit) 0.27 0.71 0.95 0.99
demand (probit) 0.27 0.71 0.95 0.99
performance 2 0.54 0.43 0.23 0.10

Type I
demand 0.05 0.06 0.05 0.05
demand (logit) 0.05 0.06 0.05 0.05
demand (probit) 0.05 0.06 0.05 0.05
performance 2 0.05 0.04 0.05 0.05

Note:
Type I error rates and power for the demand
and performance specifications at different lev-
els optimality: 2, 4, 8, 16. The practices can
only take two values: 1 and −1. δ1 = δ2 = 0.
The results are aggregated over the parameter
values of γ2 (−0.33, 0, 0.33).

3, leads to Type I errors. However, this correlated omitted variable problem was

due to a misspecification, not due to not having access to the data about the

variable. To test the vulnerability of the demand specification and the perfor-

mance 1 specification to spurious correlations in a well designed study, we run

the following simulation: We introduce a new unobserved (to the researcher)

environmental factor w that impacts the performance effect of x1 with θ1 and

the performance effect of x2 with θ2.

We set the parameters assuming a well designed study that controls for

most but not all of the environmental factors affecting the performance of both

choices. Based on the nine studies in the calibration section, we set values

for the contingency effect of the unobserved factor that reflect a large (θ1 =

0.3, θ2 = −0.3), medium (θ1 = 0.3, θ2 = −0.2), and small (θ1 = 0.3, θ2 =

−0.1) spurious correlation. The previous methodology literature has long argued

that an omitted environmental factor will bias the demand specification. The

negative bias due to the omitted correlated variable increases the probability of
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Figure 6: t-statistic of the performance and demand specification to test for comple-
mentarities when there is complementarity effect (β12 = .25), in Panel A or a null effect
(β12 = 0) in Panel B. The boxplots represent the median (the dot), the interquartile
range (the gap), and the minimum and maximum (the whiskers). O is varied between
2, 8, 32. The effect of the unobserved environmental variable, w, on the choices varies
from a strong correlation (θ1 = .3, θ2 = −.3), a medium correlation (θ1 = .3 and
θ2 = −.2), or a weak correlation (θ1 = .3, θ2 = −.1).
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Table 5: Power and Type I Error Rate with Correlated Omitted Variable

Level of Optimality

specification θ2 2 8 32

Power
demand -0.3 0.84 1.00 1.00
demand -0.2 0.84 1.00 1.00
demand -0.1 0.86 1.00 1.00
performance 1 -0.3 0.99 0.63 0.06
performance 1 -0.2 0.99 0.70 0.10
performance 1 -0.1 1.00 0.76 0.11

Type I
demand -0.3 0.06 0.07 0.12
demand -0.2 0.05 0.05 0.08
demand -0.1 0.04 0.05 0.06
performance 1 -0.3 0.18 0.21 0.21
performance 1 -0.2 0.17 0.20 0.18
performance 1 -0.1 0.14 0.18 0.16

Note:
Type I error rates and power for the demand
and performance 1 specifications at different
levels optimality: 2, 8, 32. The parameters
are the same as in Figure 6.

reporting a substitution effect in the absence of a true effect and decreases the

power to reject the null hypothesis when there is a true complementarity.8 We

theoretically argued above that under the same condition, i.e., θ1θ2 6= 0, the

performance specification will be biased as well. The results of this simulation

reveal to what extent both specifications are vulnerable to this bias.

The results are reported in Figure 6 and Table 5. These results are consis-

tent with our previous findings. The demand specification has at all but the

lowest levels of optimality more power to detect a true interdependency than

the performance 1 specification. One logical finding is that the demand speci-

fication becomes vulnerable to the omitted variable bias and thus higher Type

8A positive bias, i.e., θ1θ2 > 0, increases the probability of reporting a complementarity
effect in the absence of a true effect. The Type I errors that might occur because of this
correlated omitted variable problem are, by construction, identical to those for θ1θ2 < 0.
Using θ1θ2 < 0 in our simulation allows us to capture two problems at once, i.e., potentially
elevated Type I errors and reduced power.
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I error rates at higher levels of optimality. This effect is most pronounced with

the largest spurious correlation (θ1 = .3, θ2 = −.3) and O = 32, where we find

that in 12% of the simulations with a null effect the demand specification re-

ports a significant effect. This finding reinforces that the demand specification

will only have appropriate Type I error rates as part of a well designed study

that controls for environmental factors that affect both choices, especially when

firms adopt the optimal management controls. However, consistent with our

arguments, the performance 1 specification exhibits the exact same bias and, as

a result, the demand specification still has superior Type I error rates compared

to the performance 1 specification.

4.4. Robustness and Limitations of the Demand Specification

In this section we explore under which part of the parameter space the de-

mand specification is less robust than the performance specification. In addition,

we investigate whether our main conclusion that the demand specification gener-

ally dominates the performance specification, holds for objective functions with

three practices and three complementarities, and for a combination of discrete

and continuous practices. There are two main conclusions to this section. First,

the principal weakness of the demand specification is elevated Type I error rates

when it is optimal for more than half of the sample to choose the maximum level

for both practices. This occurs when the practices have no increasing marginal

costs (or alternatively, no decreasing marginal returns) and when contingency

effects are small. Given how extreme such a worst case scenario is, we believe

this result only marginally qualifies our main conclusion. In the majority of the

management accounting studies we belief that variation in contingency factors

and/or decreasing marginal returns will dominate over the direct benefits of the

practices. If this is the case, the demand specification has more power to detect

a true complementarity at all but the lowest level of optimality while keeping

Type I error rates at the nominal 5% level.

The second conclusion of this section is that the demand specification gen-

erally deals well with discrete practices or an objective function with more than
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two practices and complementarities. Thus, our overall conclusion and recom-

mendations generalise to this expanded objective function. Nevertheless, in this

setting the demand specification suffers from the same inflated Type I error

rate when it is optimal for more than half of the sample to choose the maximum

level for any two practices. Because the decision to adopt a binary practice is

inherently all or nothing, the issue is more pronounced for a test of complemen-

tarity between two discrete practices. Similarly as before, when the benefits of

the practices vary enough in the sample due to contingency effects, the demand

specification outperforms the performance specification at all but the lowest

level of optimality.

The technical reason for the main weakness of the demand specification is

that the corner solution of adopting both practices to their full extent violates

the second order optimality condition as discussed in 2.1. The three subsec-

tions that follow explain the technical details of the simulations and explain

how we establish quantitatively that the worst case scenario is unlikely to occur

in a typical management accounting setting. The first section investigates an

expanded set of parameter combinations to show the robustness of the base-

line results in 4.1.3. Under this simulation, corner solutions are possible for

all four combinations and they are all equally likely to occur in the sample.9

The second section changes the first simulation so that one corner solution (i.e.

both practices should be adopted to their full extent) is more likely. The third

simulation introduces a third practice in the objective function and allows for

discrete practices when one corner solution is more likely.

4.4.1. Robustness

In a first simulation, we vary the following parameters. β12 equals 0 or

0.25. δ1 = δ2 equal 0, .25 or 1. γ1 = 0.33 and γ2 equals 0, −0.33, or 0.33.

σε1 = σε2 varies between 0.5, 1, and 2 and σν equals 1 or 2. Note that these

9The four possible corner solutions are: (1) Fully adopt practice 1 and 2, (2) Fully adopt
practice 1 and do not adopt practice 2 at all, (3) fully adopt practice 2 and do no adopt
practice 1 at all, and (4) do not adopt practice 1 and 2 at all.
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parameter combinations no longer reflect the calibration to a typical manage-

ment accounting study in section 3.2. For computational reasons, we restrict

ourselves to comparing the two theoretically derived specifications: the demand

specification and the performance 1 specification.

The results in Table 6 largely confirm that only for lower levels of optimality

the performance 1 specification has more power to detect a true effect than the

demand specification. The major issue for the performance 1 specification are

the inferior Type I error rates as reported in Panel B. The biggest issue for the

demand specification is the slightly elevated Type I error rate when there are

no increases in the marginal costs of the practices (δi = 0) and the unobserved

heterogeneity is relatively small (σεi = 0.5). This is not surprising because these

are the conditions where the optimal level for the practices are corner solutions

and they violate the second-order optimality condition underlying the demand

specification.

4.4.2. Corner Solutions

In the next simulation, we exaggerate the effect of the corner solutions by

setting the main effects of the two practices, β1 and β2 equal to 0.5. This

choice favours one of the four corners, namely where a firm would adopt both

practices to their full extent. More specifically under the worst case scenario,

i.e., σε1 = σε2 = 0.5 and δ1 = δ2 = 0, 80% of observations should adopt practice

1 and 80% should adopt practice 2.10 This also implies that 64% of the sample

optimally adopts both practices to their full extent even in the absence of a

complementarity effect. In other words, for almost two thirds of the sample the

question whether the practices are complements is irrelevant.

The results in Table 7 show that the introduction of the main effects does not

affect the power of the demand specification relative to the performance speci-

10The distribution of the marginal effect of x1 on performance, ∂y
∂x1

, is given by a normal

distribution with mean β1 and standard deviation
√
σ2
ε1

+ γ21 . In the worst case scenario

for the demand specification this implies a standard deviation of
√
.25 + 0.11 ≈ 0.6. The

probability that the practice is beneficial for a firm at all levels of the practice is then given
by Φ( β1

0.6
) = Φ( 0.5

0.6
) ≈ 0.8 where Φ is the cumulative standard normal distribution.
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Table 6: Power and Type I Error Rate without Main Effects

demand specification performance specification

σεi δi σν 2 4 8 16 32 2 4 8 16 32

Power
0.5 0.00 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.64 0.14
0.5 0.00 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.76 0.30
0.5 0.25 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.37 0.08
0.5 0.25 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.89 0.57 0.29
0.5 1.00 1 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 0.56
0.5 1.00 2 0.91 0.99 1.00 1.00 1.00 1.00 1.00 0.91 0.60 0.35
1.0 0.00 1 0.99 1.00 1.00 1.00 1.00 1.00 0.98 0.72 0.13 0.01
1.0 0.00 2 0.97 1.00 1.00 1.00 1.00 1.00 0.97 0.79 0.25 0.04
1.0 0.25 1 0.99 1.00 1.00 1.00 1.00 1.00 0.92 0.33 0.01 0.00
1.0 0.25 2 0.98 1.00 1.00 1.00 1.00 1.00 0.92 0.54 0.10 0.01
1.0 1.00 1 0.85 1.00 1.00 1.00 1.00 1.00 0.98 0.82 0.43 0.17
1.0 1.00 2 0.84 0.99 1.00 1.00 1.00 1.00 0.95 0.70 0.39 0.21
2.0 0.00 1 0.66 0.98 1.00 1.00 1.00 0.73 0.63 0.24 0.02 0.00
2.0 0.00 2 0.64 0.98 1.00 1.00 1.00 0.74 0.64 0.28 0.04 0.00
2.0 0.25 1 0.70 0.99 1.00 1.00 1.00 0.74 0.51 0.08 0.00 0.00
2.0 0.25 2 0.67 0.99 1.00 1.00 1.00 0.74 0.55 0.15 0.01 0.00
2.0 1.00 1 0.58 0.97 1.00 1.00 1.00 0.81 0.59 0.18 0.02 0.00
2.0 1.00 2 0.56 0.96 1.00 1.00 1.00 0.79 0.58 0.20 0.04 0.01

Type I
0.5 0.00 1 0.07 0.10 0.09 0.07 0.06 0.10 0.09 0.07 0.08 0.08
0.5 0.00 2 0.06 0.08 0.07 0.06 0.07 0.09 0.09 0.07 0.06 0.07
0.5 0.25 1 0.06 0.05 0.05 0.05 0.05 0.11 0.08 0.10 0.10 0.11
0.5 0.25 2 0.05 0.07 0.05 0.05 0.05 0.09 0.08 0.06 0.07 0.08
0.5 1.00 1 0.03 0.04 0.04 0.04 0.03 0.14 0.13 0.13 0.10 0.09
0.5 1.00 2 0.04 0.04 0.04 0.04 0.04 0.09 0.09 0.08 0.06 0.05
1.0 0.00 1 0.05 0.05 0.04 0.05 0.05 0.10 0.10 0.08 0.07 0.07
1.0 0.00 2 0.05 0.05 0.05 0.05 0.05 0.10 0.10 0.09 0.09 0.07
1.0 0.25 1 0.06 0.05 0.06 0.05 0.05 0.11 0.12 0.11 0.11 0.12
1.0 0.25 2 0.05 0.05 0.05 0.05 0.05 0.10 0.10 0.11 0.09 0.10
1.0 1.00 1 0.05 0.04 0.04 0.05 0.04 0.14 0.16 0.16 0.16 0.15
1.0 1.00 2 0.05 0.04 0.04 0.04 0.04 0.14 0.12 0.13 0.11 0.10
2.0 0.00 1 0.05 0.06 0.04 0.05 0.04 0.11 0.11 0.09 0.08 0.07
2.0 0.00 2 0.05 0.05 0.04 0.04 0.04 0.11 0.11 0.10 0.08 0.08
2.0 0.25 1 0.05 0.05 0.04 0.04 0.04 0.12 0.12 0.12 0.10 0.10
2.0 0.25 2 0.05 0.05 0.04 0.04 0.05 0.12 0.11 0.10 0.10 0.09
2.0 1.00 1 0.04 0.05 0.05 0.06 0.05 0.14 0.14 0.17 0.17 0.20
2.0 1.00 2 0.06 0.05 0.05 0.05 0.05 0.13 0.15 0.14 0.16 0.14

Note:
Power and Type I error rate for the different levels of optimality (2, 4, 8, 16, 32) when
β1 = β2 = 0 for the demand and performance 1 specification. The effect of the environ-
mental variable, z, on the second choice is either negative (γ1 = .33 and γ2 = −.33) or
positive (γ1 = 0.33 and γ2 = 0.33). The results are averaged over the values of γ2.
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Table 7: Power and Type I Error Rate with Main Effects

demand specification performance specification

σεi δi σν 2 4 8 16 32 2 4 8 16 32

Power
0.5 0.00 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.78 0.17
0.5 0.00 2 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.78 0.28
0.5 0.25 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.31 0.04
0.5 0.25 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.54 0.18
0.5 1.00 1 0.89 0.99 1.00 1.00 1.00 1.00 1.00 0.99 0.85 0.51
0.5 1.00 2 0.87 0.99 1.00 1.00 1.00 1.00 1.00 0.91 0.57 0.33
1.0 0.00 1 0.96 1.00 1.00 1.00 1.00 1.00 0.99 0.80 0.15 0.01
1.0 0.00 2 0.92 1.00 1.00 1.00 1.00 1.00 0.98 0.83 0.26 0.04
1.0 0.25 1 0.97 1.00 1.00 1.00 1.00 1.00 0.95 0.29 0.01 0.00
1.0 0.25 2 0.94 1.00 1.00 1.00 1.00 1.00 0.94 0.54 0.08 0.01
1.0 1.00 1 0.80 0.99 1.00 1.00 1.00 1.00 0.98 0.79 0.40 0.15
1.0 1.00 2 0.78 0.99 1.00 1.00 1.00 1.00 0.95 0.68 0.35 0.18
2.0 0.00 1 0.60 0.97 1.00 1.00 1.00 0.76 0.68 0.24 0.02 0.00
2.0 0.00 2 0.57 0.96 1.00 1.00 1.00 0.75 0.67 0.30 0.04 0.01
2.0 0.25 1 0.62 0.99 1.00 1.00 1.00 0.75 0.50 0.08 0.00 0.00
2.0 0.25 2 0.61 0.98 1.00 1.00 1.00 0.74 0.55 0.13 0.01 0.00
2.0 1.00 1 0.54 0.96 1.00 1.00 1.00 0.81 0.60 0.17 0.01 0.00
2.0 1.00 2 0.53 0.94 1.00 1.00 1.00 0.79 0.58 0.19 0.03 0.01

Type I
0.5 0.00 1 0.17 0.37 0.36 0.23 0.14 0.12 0.08 0.05 0.03 0.04
0.5 0.00 2 0.11 0.24 0.23 0.19 0.13 0.09 0.07 0.05 0.05 0.04
0.5 0.25 1 0.07 0.11 0.08 0.06 0.05 0.14 0.10 0.07 0.07 0.07
0.5 0.25 2 0.07 0.08 0.07 0.06 0.05 0.08 0.07 0.06 0.05 0.05
0.5 1.00 1 0.04 0.04 0.05 0.04 0.04 0.14 0.13 0.12 0.10 0.08
0.5 1.00 2 0.04 0.03 0.04 0.04 0.04 0.10 0.08 0.08 0.06 0.06
1.0 0.00 1 0.08 0.10 0.09 0.08 0.07 0.12 0.09 0.06 0.05 0.05
1.0 0.00 2 0.07 0.09 0.09 0.08 0.06 0.10 0.09 0.08 0.06 0.05
1.0 0.25 1 0.06 0.08 0.08 0.06 0.05 0.12 0.11 0.09 0.09 0.08
1.0 0.25 2 0.06 0.08 0.06 0.06 0.05 0.11 0.10 0.09 0.08 0.08
1.0 1.00 1 0.04 0.04 0.04 0.05 0.04 0.15 0.15 0.15 0.14 0.13
1.0 1.00 2 0.04 0.04 0.04 0.05 0.04 0.13 0.12 0.12 0.10 0.09
2.0 0.00 1 0.05 0.05 0.05 0.04 0.05 0.12 0.11 0.08 0.07 0.06
2.0 0.00 2 0.05 0.06 0.05 0.05 0.04 0.12 0.10 0.09 0.08 0.07
2.0 0.25 1 0.05 0.06 0.05 0.05 0.04 0.12 0.11 0.10 0.08 0.08
2.0 0.25 2 0.05 0.05 0.04 0.05 0.04 0.12 0.11 0.11 0.10 0.08
2.0 1.00 1 0.05 0.04 0.06 0.05 0.05 0.13 0.16 0.17 0.16 0.18
2.0 1.00 2 0.05 0.06 0.05 0.04 0.05 0.12 0.13 0.15 0.14 0.15

Note:
Power and Type I error rate for the different levels of optimality (2, 4, 8, 16, 32) when
β1 = β2 = 0.5 for the demand and performance 1 specification. The effect of the
environmental variable, z, on the second choice is either negative (γ1 = .33 and γ2 =
−.33) or positive (γ1 = 0.33 and γ2 = 0.33). The results are averaged over the values of
γ2.
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fication. Table 7 shows that the Type I error rate of the demand specification

breaks down under the worst case scenario and one corner solution outlined

above. Increases in unobserved variation in performances (σεi) and marginal

costs (δi) largely mitigate the problem.

4.4.3. Two Discrete Practices and One Continuous Practice

Given that corner solutions violate the assumption of the demand specifica-

tion, we run a last simulation to test the robustness of the demand specification.

We extend the objective function to three practices where the first and the third

practice are discrete practices. Table 8 reports the power of both specifications

to detect a true substitution effect between the first and the second practice

(β12 = −0.25) and a true complementarity between the first and the third prac-

tice (β13 = 0.25). Table 8 further reports the resulting Type I error rates in the

absence of these effects. In both panels there is a complementarity between the

second and the third practice (β23 = 0.25). β12 represents a complementarity

between a continuous and a discrete practice. β13 represents a complementarity

between two discrete practices. The full objective function with x1 and x3 as

binary practices is reproduced below.

y =(0.5 + 0.33z + ε1)x1 + (0.5− 0.33z + ε2)x2

+ (0.5 + 0.33z + ε3)x3 + β12x1x2 + β13x1x3 + 0.25x2x3 −
1

2
δ2x

2
2 + ν

The parameters are the same as in the previous simulation with two ex-

ceptions. First, we need to set the parameters for the direct effect (β3 = 0.5)

and the contingency effects for the third practice (σε3 = σε1 = σε2 , γ3 = 0.33).

Second, only the continuous, second practice can have increasing marginal costs.

The results in Table 8 are consistent with Table 7. The relative advantage

of the demand specification to detect a true effect has not changed. The Type I

error rates again show that the demand specification does not adequately control

the false positive rate when there is low unobserved heterogeneity (σεi = 0.5).

When almost two thirds of the sample optimally adopts two practices (to their
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full extent) in the absence of an interdependency between these practices, the

demand specification should not be trusted. Untabulated results show that

the problem is less pronounced when there is more unobserved heterogeneity in

performance (σν = 2 or σν = 4). For the interdependency with only one discrete

practice, the problem for the demand specification dissipates when marginal

costs of the continuous practice increase (δ2 = 1).

The results largely confirm the superiority of the demand specification for

a typical management accounting study with one more caveat. When the two

practices are discrete and should be adopted together in the absence of any

interdependencies by the majority of the sample (σεi = 0.5), the demand spec-

ification does not adequately control the Type I error rate. We argue that this

is an uncommon occurrence for most management accounting practices.

4.5. Contingent Complementarity

In this section we extend the baseline model by allowing for a contingency

effect on the complementarity. That is, we assume that not only the main

effect of the practices depends on the environmental factor, z, but also the

complementarity itself. The simplified objective function for the simulations

is then as follows, where the parameter γ12 governs how the complementarity

depends on the environmental factor:

y = (0.33z + ε1)x1 + (γ2z + ε2)x2 + (β12 + γ12z)x1x2 −
1

2
x21 −

1

2
x22 + ν (6)

The management accounting literature has shown great interest in investi-

gating whether the strength of complementarity effects varies by environmental

factors. For instance Grabner (2014) reports that subjective performance eval-

uation and performance based pay are complements for creativity dependent

firms but not for other firms. Some researchers test for contingent complemen-

tarity effects by splitting the sample into observations with high and low values

for the environmental factor and running separate regressions for both sam-

ples using either the performance specification or the demand specification. For
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Table 8: Power and Type I Error Rate with Main Effects and Discrete Practices

demand specification performance specification

σεi δ2 σν 2 4 8 16 32 2 4 8 16 32

1 Discrete Practice - Power
0.5 0.00 1 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

0.5 0.25 1 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97

0.5 1.00 1 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
1.0 0.00 1 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.77

1.0 0.25 1 0.92 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.92 0.68
1.0 1.00 1 0.86 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.89 0.76

2.0 0.00 1 0.50 0.93 1.00 1.00 1.00 0.74 0.79 0.66 0.39 0.18

2.0 0.25 1 0.54 0.96 1.00 1.00 1.00 0.73 0.75 0.60 0.30 0.15
2.0 1.00 1 0.51 0.93 1.00 1.00 1.00 0.72 0.70 0.54 0.35 0.18

1 Discrete Practice - Type I
0.5 0.00 1 0.09 0.20 0.27 0.28 0.18 0.10 0.08 0.06 0.04 0.03

0.5 0.25 1 0.08 0.15 0.19 0.19 0.14 0.10 0.08 0.06 0.05 0.04
0.5 1.00 1 0.05 0.06 0.06 0.04 0.04 0.12 0.10 0.07 0.06 0.07

1.0 0.00 1 0.05 0.07 0.08 0.09 0.08 0.10 0.08 0.07 0.04 0.05

1.0 0.25 1 0.07 0.06 0.06 0.07 0.07 0.09 0.07 0.06 0.05 0.05
1.0 1.00 1 0.05 0.06 0.06 0.05 0.04 0.08 0.09 0.07 0.06 0.05

2.0 0.00 1 0.06 0.04 0.04 0.04 0.06 0.09 0.08 0.08 0.06 0.06

2.0 0.25 1 0.06 0.07 0.05 0.05 0.06 0.07 0.09 0.07 0.05 0.05
2.0 1.00 1 0.04 0.06 0.05 0.05 0.05 0.08 0.09 0.08 0.07 0.06

2 Discrete Practices - Power

0.5 0.00 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.5 0.25 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.00 1 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.0 0.00 1 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91

1.0 0.25 1 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92
1.0 1.00 1 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

2.0 0.00 1 0.61 0.98 1.00 1.00 1.00 0.79 0.88 0.84 0.60 0.35

2.0 0.25 1 0.58 0.98 1.00 1.00 1.00 0.84 0.90 0.85 0.61 0.30
2.0 1.00 1 0.51 0.97 1.00 1.00 1.00 0.85 0.91 0.91 0.76 0.46

2 Discrete Practices - Type I

0.5 0.00 1 0.14 0.21 0.24 0.13 0.08 0.11 0.08 0.06 0.04 0.06

0.5 0.25 1 0.13 0.27 0.29 0.17 0.11 0.09 0.08 0.07 0.06 0.04
0.5 1.00 1 0.08 0.22 0.32 0.33 0.26 0.11 0.13 0.10 0.06 0.06

1.0 0.00 1 0.08 0.09 0.06 0.07 0.07 0.09 0.08 0.08 0.05 0.05
1.0 0.25 1 0.06 0.09 0.09 0.08 0.07 0.12 0.10 0.08 0.06 0.04
1.0 1.00 1 0.05 0.10 0.11 0.10 0.08 0.09 0.09 0.10 0.07 0.05
2.0 0.00 1 0.06 0.05 0.05 0.06 0.06 0.09 0.09 0.07 0.07 0.06

2.0 0.25 1 0.04 0.05 0.05 0.05 0.06 0.11 0.08 0.07 0.07 0.05
2.0 1.00 1 0.06 0.06 0.05 0.05 0.05 0.10 0.10 0.08 0.06 0.06

Note:
Power and Type I error rate for the different levels of optimality (2, 4, 8, 16, 32) when

β1 = β2 = 0.5 for the demand and performance 1 specification. Power refers to the pro-
portion of samples with a significantly negative estimate for the interdependency between

a discrete and a continuous practice (β12 = −0.25) and a significantly positive estimate for

the interdependency between two discrete practices (β13 = 0.25). Type I refers to the pro-
portion of samples with a significant estimate for the complementarity when β12 = β13 = 0.
β1, β2, and β3 equal 0.5. Because two of the practices are discrete δ1 = δ3 = 0.
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Table 9: Power and Type I Error Rate for Contingent Complementarity

Level of Optimality

specification β12 2 4 8 16 32

Power
demand 0.00 0.94 1.00 1.00 1.00 1.00
demand 0.25 0.92 1.00 1.00 1.00 1.00
performance 1 0.00 1.00 1.00 0.99 0.81 0.37
performance 1 0.25 1.00 1.00 0.99 0.82 0.48
performance 2 0.00 0.72 0.54 0.82 0.97 0.99
performance 2 0.25 0.80 0.67 0.87 0.94 0.94

Type I
demand 0.00 0.05 0.05 0.05 0.04 0.05
demand 0.25 0.05 0.03 0.05 0.04 0.04
performance 1 0.00 0.15 0.17 0.18 0.16 0.15
performance 1 0.25 0.15 0.17 0.17 0.18 0.17
performance 2 0.00 0.19 0.19 0.19 0.17 0.17
performance 2 0.25 0.19 0.18 0.17 0.17 0.19

Note:
Power is the proportion of samples reporting a significantly
negative (when γ12 = −0.33) or a significantly positive
(when γ12 = 0.33) contingent complementarity. Type I is
the proportion of samples reporting a significant contingent
complementarity when γ12 = 0. The remaining parameters
are the same as in the baseline simulation in Figure 3.

instance, they expect a significant complementarity in one sample and no signif-

icant complementarity in the other sample. Our results and conclusions so far

about the power and Type I error respectively directly apply to this approach,

where these issues can now also affect the comparison between the subsamples.

For example, the approach might miss a true effect in one subsample if the

power of the specification is low, or alternatively it might erroneously report an

effect when the Type I error rate of the specification is elevated.

Others try to estimate the parameter γ12 more directly. In this approach, the

demand specification and performance specification include an additional term

to capture the contingent complementarity: respectively γd12x2z and γp12x1x2z.

The full demand, performance 1, and performance 2 specification are given

below. We do not report the performance 3 specification because it is unlikely

that a researcher would exclude x1z or x2z from the regression model when
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estimating the coefficient of x1x2z.

x1 = βd0 + βd12x2 + γd12x2z + γd1z + εd

y = βp10 + (βp11 + γp11 z)x1 + (βp12 + γ2z)x2 + (βp112 + γp112z)x1x2 + δp11 x
2
1 + δp12 x

2
2 + αp1z + νp1

y = βp20 + (βp21 + γp21 z)x1 + (βp22 + γ2z)x2 + (βp212 + γp212z)x1x2 + αp2z + νp2

Table 9 reports the results of a simulation to evaluate this approach similar

to the baseline simulation. In the simulation, we vary the level of optimality O

(2, 4, 8, 16, 32), the complementarity, independent of the environmental factor,

β12 (0 or 0.25), the direct contingency effects, γ1 (0.33) and γ2 (−0.33 or 0.33),

and the contingency effect on the complementarity, γ12. Table 9 shows the

power to detect a contingent complementarity (γ12 = 0.33 or −0.33) and the

the Type I error rate in the absence of a contingent complementarity (γ12 = 0).

The results show that demand specification also outperforms the perfor-

mance specifications to test for a contingent complementarity at all but the

lowest levels of optimality. As before, the demand specification has similar or

more power to detect a true effect while maintaining better control over Type I

error rates at all levels of optimality.

5. Going Forward

In this section, we use the above results to provide guidance for future studies

on interdependencies between management control practices. First, we explain

why it will almost always be better to rely on the demand specification in a

research setting without a natural experiment, and why researchers should re-

port the results of the demand specification in addition to the results of the

performance specification. Second, we explain how researchers can appropri-

ately control for contingency effects in the performance specifications. Third,

we show how the bootstrap and corrections to standard error and degrees of

freedom calculations can dramatically improve the Type I error rates of the
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performance specification. Fourth, we show how researchers can combine the

results of the demand and performance specification if only one of them reports

a significant interdependency.

5.1. Reporting the Demand Specification

Our recommendation applies to studies that test for complementarity (or

substitution) with cross-sectional data where it is unlikely that firms have almost

randomly chosen the accounting system. We recommend to always report the

demand specification as it will have higher power to detect the complementarity

while maintaining appropriate Type I error rates. This recommendation does

not put any extra burden on the researcher with respect to data collection

because the demand specification does not require additional data compared to

the correctly specified performance specification.

A researcher might be interested in using the performance specification be-

cause they are interested in outcomes that are not the ultimate objective of the

firm. For instance, researchers who are interested in which accounting system

causes stress in employees (Shields et al., 2000) can use the performance specifi-

cation to investigate this research question. The success of this approach hinges

on whether the intermediate outcome (e.g. stress) is related to the final objec-

tive (e.g. job performance). If the intermediate outcome and the final objective

are strongly correlated, the intermediate outcome will behave as a noisy mea-

sure of the final objective. In that case, the additional noise will be subsumed

in the residual term. As we showed in Figure 4 the additional noise hampers

the performance specification more than the demand specification. In other

words, if the intermediate outcome is strongly related to the final outcome, all

the problems with the performance specifications will emerge and the demand

specification will be superior to detect an interdependency.

5.2. Controlling for Contingency Factors

One advantage of the performance specification is that it can estimate di-

rectly the size of the complementarity in terms of a performance increase. In
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order to report this estimate, a researcher should estimate the performance spec-

ification with the inclusion of all interactions between the accounting practices,

such as delegation and incentives, as well as contingency factors that affect the

performance of the practices, such as environmental uncertainty.

Bedford et al. (2016) provide an example of how to control for environmental

dynamism in a complementarity test with the performance specification. For

instance, their Table 6 reports the test for the complementarity effect of inter-

active control and firm structure on management control effectiveness, as well

as controls for the interaction between environmental dynamism and interactive

control and between environmental dynamism and firm structure.

When there are a large number of contingency factors that need to be in-

cluded, the performance specification has to include a large number of interac-

tions which can yield unstable estimates. We recommend that researchers use

a dimension reduction technique such as principal component analysis on the

contingency factors to reduce the number of variables and interactions in the re-

gression. This recommendation assumes that researchers are mainly interested

in estimating the complementarity and only include the contingency factors as

control variables.

5.3. Correcting Type I Errors

Further, we address the Type I error rates of the performance specification.

Even after adjusting for contingency factors, our results show that the perfor-

mance specification consistently reports a higher proportion of Type I errors

than the nominal false positive rate of 5%. We propose two solutions to this

problem. The first solution is the bootstrap approach, which relies on repeated

resampling of the data to empirically estimate the true distribution of the in-

terdependency parameter (Efron & Hastie, 2017). The second solution relies on

adjustments to the estimates of the standard error and degrees of freedoms that

are used to calculate the t-statistic and p-value of the interdependency estimate

(Young, 2016).

The bootstrap approach requires to run the performance specification re-
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peatedly after resampling the data with replacement. The assumption of the

bootstrap approach is that the data in the sample are representative of the

broader population and that resampling from this sample approximates the

variation in the population. To show the impact of bootstrapping, we run for

each resampled dataset the performance specification, keep the estimate βp312

, and use the distribution of these estimates to decide whether the comple-

mentarity is statistically significant. If the 95% bias-corrected and accelerated

confidence interval does not include 0, the complementarity is considered signif-

icant (Efron & Hastie, 2017). We use the recommended 2000 repetitions to get

accurate estimates of the confidence interval (Efron & Hastie, 2017).

We test the Type I error rate and the power of the bootstrap approach

for the performance 1 specification on a subset of the parameters of the main

analysis. The computational burden of the bootstrap approach forces us to limit

the parameter space. Specifically, we limit the effect of the contingency factor

z on x2 to two values (γ2 = 0.33 and γ2 = −0.33) and we limit the values of the

level of optimality to three values (O = 2, O = 8, and O = 32). The results in

Table 10 show that the bootstrap approach reduces the Type I error rates of the

performance specification considerably, close to the nominal 5%. Unfortunately,

the improvement in error rates comes at the cost of reduced power to detect a

true complementarity.

Young (2016) proposes a computationally efficient alternative adjustment.

The adjustment uses the result that the standard error of a coefficient estimate

is chi-squared distributed when the residuals of the regression are normally

distributed. Young (2016) proposes an adjustment to the standard errors to

allow deviations from normality and account for the possibility of influential

outliers. In addition, he proposes a further adjustment to the degrees of free-

dom of the chi-squared distribution and thus of the t-statistic of the coefficient,

to account for the fact that the data do not contain completely independent

observations. Recall that one of the problems for the performance specification

is that optimally designed accounting systems are completely determined by

the contingency factors and thus firms in the same environment have the same
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Table 10: Power and Type I Error Rate with Bootstrap

Level of Optimality

specification γ2 2 8 32

Power
performance 1 -0.33 0.99 0.68 0.09
performance 1 0.33 0.99 0.65 0.08

Type I
performance 1 -0.33 0.06 0.07 0.06
performance 1 0.33 0.05 0.07 0.06

Note:
Type I error rates and power for the perfor-
mance 1 specification at different levels of op-
timality: 2, 8, 32. γ2 is set at either −0.33 and
0.33. The other parameters are the same as in
Figure 3.

optimal accounting system. In other words, firms in the same environment are

not independent from each other. As a result, the adjustments to the stan-

dard errors and degrees of freedom are appropriate to improve the performance

specification.

We rerun the main analysis for the demand and performance 1 specification.

Table 11 reports the Type I error rate and power of both specifications with

and without the corrections. For ease of exposition, we have aggregated the

simulations over the different values of γ2. The results show that the corrections

almost bring the Type I error rates of the performance 1 specification to the

nominal level of 5%. As with the bootstrap results, this comes at the cost of a

decrease in the power to detect a true complementarity.11

Because the power and Type I error rate of the bootstrap approach and the

Young (2016) corrections are indistinguishable, researchers can report results

11The corrected standard errors are 2.8% (O = 2) to 1% (O = 64) smaller for the demand
specification and 34% (O = 2) to 25% (O = 64) higher for the performance specification.
The corrected degrees of freedom are 53% (O = 2) to 64% (O = 64) smaller for the demand
specification and 77% (O = 2) to 85% (O = 64) for the performance specification. The cor-
rection of the standard errors have the largest impact on the improvement of the performance
specification error rate. In practice, the degree of freedom correction could be as beneficial in
smaller samples.
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Table 11: Power and Type I Error Rate with Nearly Exact Correction

Level of Optimality

specification 2 4 8 16 32 64

Power
demand 0.85 1.00 1.00 1.00 1.00 1.00
demand corrected 0.86 1.00 1.00 1.00 1.00 1.00
performance 1 1.00 0.98 0.83 0.45 0.16 0.07
performance 1 corrected 0.99 0.93 0.66 0.29 0.09 0.03
combined 1.00 1.00 1.00 1.00 1.00 1.00
combined corrected 1.00 1.00 1.00 1.00 1.00 1.00

Type I
demand 0.04 0.04 0.05 0.05 0.05 0.05
demand corrected 0.05 0.05 0.05 0.05 0.05 0.05
performance 1 0.16 0.16 0.15 0.16 0.14 0.14
performance 1 corrected 0.06 0.06 0.06 0.06 0.06 0.06
combined 0.20 0.20 0.20 0.20 0.18 0.18
combined corrected 0.11 0.10 0.10 0.11 0.10 0.11

Note:
Type I error rates and power for the demand and performance func-
tion specification at different levels optimality: 2, 4, 8, 16, 32, 64.
The parameters are the same as in the main analysis in the Figure
refmain.

on the performance specification adjusting the OLS results with either of those

methods. The bootstrap approach has the advantage that it is more flexible

and applicable to other functional forms and multiple equation models. Most

modern statistical packages have the functionality to run bootstrap tests. The

corrections to the standard error and degrees of freedom are generally faster

but limited to linear models. STATA users can use the script on Alwyn Young’s

website, while R users can use the functions on the Github page of this paper.12

5.4. Combining Performance and Demand Specification

Because the power of the performance specification decreases with the level

of optimality while the power of the demand specification increases, a researcher

might be tempted to run both regressions and decide that a complementarity

is real if either of the regressions reports a significant effect. We assess this

12http://personal.lse.ac.uk/YoungA/ and https://github.com/stijnmasschelein/

complementarity-simulation/blob/master/R/nearly_exact_correction.R
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combined strategy in Table 11. The results show that independent of the level

of optimality, the combined approach with and without the correction leads to

inflated Type I error rates. Further investigation of the results shows that for

a given sample the probability of a false positive in the demand specification is

independent of the probability of a false positive in the performance specifica-

tion. Therefore, we recommend that researchers use a significance level of 2.5%

for each test to keep the Type I error rate at 5% when combining the demand

specification and the performance specification. Untabulated results show that

this strategy contains the overall Type I error rate to the nominal 5%.

6. Summary and Discussion

This study builds on earlier studies on complementarity theory (Milgrom &

Roberts, 1995; Grabner & Moers, 2013), to provide guidance on how to test for

the presence of interdependencies in management control systems. The results

of the simulation study show that in most common scenarios the assumptions

of optimality should not be the main driver in deciding between the demand or

the performance specification. In fact, unless researchers can make the case that

a large number of firms have a management control system where the relation

between practices is the opposite of the optimal relation or that contingency

effects are small, the demand specification should be the preferred specification.

A straight-forward check on the optimality assumption is to investigate the

correlation between the practices and the environmental variables. Non-trivial

levels of optimality in the sample will induce correlations between management

accounting practices and environmental factors when there are contingency ef-

fects.13

When performance data is available, the performance specification can be

13The absence of any correlations does not imply the absence of high levels of optimality,
as multiple contingency effects can cancel each other out. Another clarification about the
superiority of the demand specification is that it does not imply that the demand specification
provides evidence for high levels of optimality. A statistically significant interdependency
effect in the demand specification only implies that firms on average avoid the worst possible
management control systems, not that they have on average the optimal control system.
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estimated as an additional test in combination with the demand specification.

The performance specification can be expected to yield acceptable estimates

when there is considerable variation between firms in the same environment.

However, the results of this study show the importance of adequately controlling

for contingency factors and adjusting the estimates of standard errors. As far as

we know, the current accounting literature does not fully address these problems

which lead to substantial increases in Type I error rates and a loss of power.

The most important weakness of the demand specification is that it assumes

that the performance benefits of management control practices are decreasing

with more extensive use. If this second-order condition does not hold, the

demand specification might have elevated levels of false positives. We suggest

that researchers verify the distribution of the management practices to check

whether the second-order condition holds. If one of the management practices

has more observations at the extremes of the measurement scale than at the

centre, the second order condition might be violated and the results of both

the demand and the performance specification should be interpreted with some

caution. A conservative approach is to treat the practices as binary choices.

This study has several limitations. The recommended approach, the demand

specification, does not allow to estimate the performance effect of the interde-

pendency directly. More sophisticated models are needed to reliably estimate

this performance effect. The economics literature has proposed and used a mul-

tiple equation model that combines both demand and performance functions

(Athey & Stern, 1998; Gentzkow, 2007; Kretschmer et al., 2012; Miravete &

Pernias, 2006). Further research can investigate the properties of these statisti-

cal models for the management control setting. An additional advantage of the

models is that they can incorporate the effect of unobserved contingency factors

and unobserved interdependent practices. A more detailed discussion of these

issues goes beyond the scope of this study.

Another limitation of the current study is that the level of optimality is im-

plemented with a naive algorithm that lacks external validity. Better theoretical

models of how firms choose management accounting practices can improve upon
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our understanding of the distribution of management accounting practices and

their interdependencies. The approach of Hemmer and Labro (2019) is one po-

tential avenue to explore further. They model the firm’s choices as decisions

under incomplete information with Bayesian updating when more information

becomes available. In these models, firms can end up with ex-post sub-optimal

management control systems because they lack the appropriate information to

choose the optimal system. The parameter governing the lack of information can

replace our optimality parameter, O. Further innovations in these models can

allow researchers to estimate directly the extent to which firms lack information

and choose sub-optimal management control practices.
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Appendix A. Omitted Variable Bias

The expected bias of omitting the term x1z on the estimate of βp312 in the

performance 3 specification is given by γ1
cov(x̃1x2,x̃1z)
var(x̃1x2)

(Chenhall & Moers, 2007)

where x̃1x2 and x̃1z are the residual vectors of regressing x1, x2, and z on x1z

and x1z respectively (Angrist & Pischke, 2008; Cunningham, 2018). Assume

that x1, x2, and z are multivariate standard normal with correlations r12, r2z,

and r1z. We can use the Isserlis (1918) theorem to derive the covariance between

an interaction and one of the variables. Specifically, We make use of the fact that

the expectation of the product of an odd number of standard normal variables

equals 0. In the simplest case, E(x1) = E(x2) = E(z) = 0.

cov(x1x2, x1) = E(x21x2)− E(x1x2)E(x1)

= 0− 0

cov(x1x2, x2) = 0

cov(x1x2, z) = 0

cov(x1z, x1) = 0

cov(x1z, x2) = 0

cov(x1z, z) = 0

Given that the covariance between any product of two variables and a single

variable is 0, the expectation of the residual terms x̃1x2 and x̃1z equal x1x2 and

x1z respectively.

cov(x̃1x2, x̃1z)

var(x̃1x2)
=
cov(x1x2, x1z)

var(x1x2)

where,
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cov(x1x2, x1z) = E(x21x2z)− E(x1x2)E(x1z)

= E(x21)E(x2z) + E(x1x2)E(x1z) + E(x1z)E(x1x2)− E(x1x2)E(x1z)

= E(x21)E(x2z) + E(x1x2)E(x1z)

= r2z + r12r1z

In the second line, we use the Isserlis (1918) theorem for the product of

an even number of multivariate standard normal variables. In the last line we

make use of the fact that E(x21) = var(x1) = 1, and the fact that the correlation

of two multivariate standard normal distributions equals the expected value of

their dot product. Similarly, we can derive the variance of x1x2.

var(x1x2) = E(x21x
2
2)− E(x1x2)E(x1x2)

= E(x21)E(x22) + E(x1x2)E(x1x2) + E(x1x2)E(x1x2)− E(x1x2)E(x1x2)

= 1 + r212

Putting this all together, the bias of omitting the term x1z on the estimate of

βp312 is γ1
r2z+r12r1z

1+r212

Similarly, the bias of omitting the term x1z on the estimate of βp312 is γ2
r1z+r12r2z

1+r212

The bias of omitting the terms x21 and x22 is δ1r12
1+r212

and δ2r12
1+r212

respectively.
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